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Short Papers .-

Spectral-Domain Approach for Continuous Spectrum

of Slot-Like Transmission Lines

J. CITERNE AND W. ZIENIUTYCZ

Abstract —For the first time, the continuous spectrum part of slot-like

transmission Iiues is deseribed using the speetraf-domain approach whieb

has been successfully applied to the discrete part. Reliability of the

approach is checked by nmnericaf calculation of the surface current

distribution across the slot plane iu a simple illustrative example.

I. INTRODUCTION

It is well known that surface waves do not form a complete set

for open waveguides since the radiated field cannot be described

by these modes alone [1]. Knowledge of the complete spectrum is

required in order to analyze rigorously open discontinuities in

which radiation cannot be neglected [2]. The discrete spectrum of

slot-like lines (SL lines) has been successfully analyzed by the

spectral-domain approach (SDA) [3]. It is the purpose of this
paper to show that this technique @so gives good results for the
continuous spectrum.

II. FORMULATION

The SL lines under analysis (Fig. 1) consist of a combination of

slots in an infinite conducting plane with a number of lossless

dielectric layers superimposed on both sides. The e-J~z depen-

dence and eJ”’ time variation are omitted in the analysis.

Using the Fourier transform in each region i (i= O. . . N), the

spectral densities of the axial field components of a continuous

mode can be written as a combination of spectral plane waves

where

-f,
2_ 2_a2

– P, p;=k:-(12 k;=$,.
c

The phase constant /3 of the forward-traveling wave may be

either real (O </3 < kO) for propagating modes or imaginary

(– jm < /3 < jO) for evanescent modes. The whole continuous

spectrum is then obtained by summing the modal fields (1) over

the above-mentioned ranges of /3.

In both the discrete and continuous spectra, the condition to

be imposed at infinity is that modal fields are bounded [1]. This

condition uniquely defines the modal fields in regions O and N

as the inverse Fourier transform of (1) requiring for every con-

stituent plane wave

Imyo=Imy~>O. (2)
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Fig. 1. Cross section of slot-fike lines (“ symmetric” configuration)
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Fig. 2. Integration paths in the “proper sheet” in the a complex plane. (a)

Lossy regions O and N. (b) Lossless regions O and N. I: Discrete spectrum

case ( P2 < O). II: Continuous spectrum case( P2> O).

By assuming regions O and N to be lossy, the wiggly lines in Fig.

2(a) define the branch cuts of the double-valued functions y. = y~

in the complex a = u + ir plane. me integration path from

a = – m to + co in Fig, 2(@ thus can be chosen as the real axis iii

the “proper” sheet of the a-plane where (2) is satisfied. Now,

removing the losses in regions O and N, Fig. 2(b) describl?s

integration paths for both the discrete spectrum with pi = pi =

P2 <0 and the continuous spectrum with Pa = Pi = P2>0. It can
be noted in Fig. 2(b) that the discrete spectrum crpI use only tile
invisible range (y. = y~ = j y, y > O) of the plane-wave represen-

tation (1) for every real value of a lying on the integration path

(O< Ial < m). So, in the whole spectral domain, we can write

Be(a) = ll~(a) = O and ~~(a) =Ak(a) = O in accordance with

[3]. As for the plane-wave representation of the continuous spec-

trum, both invisible (YO = y~ = jy, y > O) and visible ( y. = y~ =

y, y > O) ranges must be used. Invisible and visible ranges

correspond to parts p < Ial < w and O < Ial < p of the spectmf

domain, respectively. The former is the evanescent part of the

continuous spectrum for which we still have BO ( a) = Bj ( a) =, O

and -4~ (a)= .4~ ( a) = O arid is related to the near-zone field.

The latter is the propagating type and is responsible to the

far-zone field; it provides the infinite complex power flow of a
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continuous mode [4] that can be written as

P=a(Y-,,(&Jp(,Ao(.,t+lBo(.)f

+JAN(a)12+1BN(a)12)da

(3)

From (3), it can be seen that a power separation arises between

constituent spectral plane waves of TE and TM types as well as

between spectral plane waves of a given type radiating in either

the y or – y direction. Therefore, continuous field solutions have

to be constructed from four partial scattered fields corresponding

to the illumination of the SL lines by TE and/or TM incident

spectral plane waves denoted Ah(a) e–Jyy and/or A.(a) e“~YJ’,

respectively, in region O, and TE and/or TM incident spectral

plane waves denoted B~ (rY)e~yy and/or BN ( a) e~YY,respectively,

in region N.

These incident waves with arbitrary amplitudes and phases are

created by filamentag sources at infinity. Selecting, for instance,

the TE incident spectral wave A~(a) e-Jyy, we must write Ao(a)

= O and BN (a)= 13~(a) = O in the visible range of (l). Let us

notice that the invisible range of the spectral domain does not

exist in “symmetric” multilayered waveguides (co = c~ ) with

homogeneous boundaries at the interface y = O [4]. On the con-

trary, this range is used in an “asymmetric” configuration ( co +

CN) [5]. For each parti~ field, both homogeneous and inhomoge-
neous boundary conditions at interfaces y, can be written in a

general matrix notation [6]. This leads to pairs of functional

equations relating the spectral densities of the tangential electric

field to those of the surface current at the slot plane y = O. They

are written as

for the visible (vis) range of the spectral domain, and as

for the invisible (inv) range of the spectral domain. Quantities

Al(a) and A2 (a) in (4a), which are functions of the amplitude of

the selected incident TE or TM spectral plane wave, represent
sources at infinity. Obviously, no sources appear in (4b). Then,
(4) can be solved in the spectral domain by using the Galerkin

procedure as in [3]. Here, a set of inhomogeneous linear equa-

tions (deterministic problem) is obtained, whose solution gives

the spectral densities of the partial hybrid field under considera-

tion for each permissible value of the phase constant /?.

IIL NUMERICAL RESULTS

To verify the reliability of the method, the single-slot config-

uration without dielectric layers has been examined. Such an SL

line supports continuous waves only. The partial field that corre-

sponds to the TE spectral wave xI’( a) e–JyJ’ incident in the y

direction becomes purely TE so that E== H= = O anywhere. We

have in the invisible range B;(a)= ,4;(a)= O, while in the visible

one, B{(a) = O and Ah(a) =1; such a source normalization in
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Fig. 3. Current density distribution .lX (x, O) in the slot plane corresponding

to a given partial field. Nb = 2, F= 3 GHz, L3 = – J1 rd/mm, 2 W = 1.66

mm.

the spectral domain has to be distinguished from the field nor-

malization given by (3).

The EX electric-field component across the slot aperture ( Ix 1<

W) for all partial hybrid fields was expanded as

/m Nb

Ex(x,o)=ao 1– ~ 2 + ~ a~cos~x. (5)
~=1

Equations (4) have been solved numerically to yield the spectral

partial field densities fiX (a, O) and ~X( a, O). The electric field

EX( x, O) always satisfies the inhomogeneous boundary conditions

at the slot plane y = O because of the choice of expanding

functions (5). To confirm the validity of the method, the surface

current .TX( x, O) must verify the prescribed inhomogeneous

boundary conditions at the slot plane

Jx(x,o)=o, 1X1< w

.lx(x,o) #o, Ixl> w. (6)

Fig. 3 shows real and imaginary parts of the surface current at

the slot plane y = O. inasmuch as the current in the aperture is

found insignificant in comparison with that on the conducting

half plane, conditions (6) are satisfied.

IV. CONCLUSION

The spectral-domain approach for the continuous spectrum of

slot-like lines is presented. Numerical results obtained for one of

the four partial fields in a single-slot without dielectric layers

confirm the reliability of the analysis. The method can be easily

extended for microstnp-like transmission lines. Further results

will be presented in the near future.
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