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Short Papers

Spectral-Domain Approach for Continuous Spectrum
of Slot-Like Transmission Lines

J. CITERNE anDp W. ZIENIUTYCZ

Abstract —For the first time, the continuous spectrum part of slot-like
transmission lines is described using the spectral-domain approach which
has been successfully applied to the discrete part. Reliability of the
approach is checked by numerical calculation of the surface current
distribution across the slot plane in a simple illustrative example.

I. INTRODUCTION

It is well known that surface waves do not form a complete set
for open waveguides since the radiated field cannot be described
by these modes alone [1]. Knowledge of the complete spectrum is
required in order to analyze rigorously open discontinuities in
which radiation cannot be neglected [2]. The discrete spectrum of
slot-like lines (SL lines) has been successfully analyzed by the
spectral-domain approach (SDA) [3]. It is the purpose of this
paper to show that this technique also gives good results for the
continuous spectrum.

1L

The SL lines under analysis (Fig. 1) consist of a combination of
slots in an infinite conducting plane with a number of lossless
dielectric layers superimposed on both sides. The e~/#? depen-
dence and e/“’ time variation are omitted in the analysis.

Using the Fourier transform in each region i (i=0 - -+ N), the
spectral densities of the axial field components of a continuous
mode can be written as a combination of spectral plane waves

{z?z,(a,y)}: {Ai“)}e-m{Bz<a>}em o

H,(a,y) 4 () B(a)

FORMULATION

where

w?

=p—o p=k’—-p k?=?€,-
The phase constant B of the forward-traveling wave may be
either real (0 <8 <k,) for propagating modes or imaginary
(— joo<B < jO) for evanescent modes. The whole continuous
spectrum is then obtained by summing the modal fields (1) over
the above-mentioned ranges of 8.

In both the discrete and continuous spectra, the condition to
be imposed at infinity is that modal fields are bounded [1]. This
condition uniquely defines the modal fields in regions O and N
as the inverse Fourier transform of (1) requiring for every con-
stituent plane wave

@)

Imy, =Imyy >0.
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Fig. 1. Cross section of slot-like lines (“symmetric” configuration).
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Fig. 2. Integration paths in the “proper sheet” in the a complex plane. (a)

Lossy regions O and N. (b) Lossless regions O and N. I: Discrete spectrum
case (p® < 0). II: Continuous spectrum case (p? > 0).

By assuming regions O and N to be lossy, the wiggly lines in Fig.
2(a) define the branch cuts of the double-valued functions y, = vy
in the complex a=o +ir plane. ‘The integration path from

= — o0 to + oo in Fig. 2(a) thus can be chosen as the real axis in
the “proper” sheet of the a-plane where (2) is satisfied. Now,
removing the losses in regions O and N, Fig. 2(b) describes
integration paths for both the discrete spectrum with p3 = %, =
p? < 0 and the continuous spectrum with p} = p% = p? > 0. It can
be noted in Fig. 2(b) that the discrete spectrum can use only the
invisible range (y, = vy = j¥, ¥ > 0) of the plane-wave represen-
tation (1) for every real value of a lying on the integration path
(0 < |aj < 0). So, in the whole spectral domain, we can write
B,(a) = BhH(a)=0 and Ay (a)=A%(a)=20 in accordance with
[3]. As for the plane-wave representation of the continuous spec-
trum, both invisible (y, = yy = j¥, v > 0) and visible (y, = vy =
Y, y>0) ranges must be used. Invisible and visible ranges
correspond to parts p <|a]<oo and 0 <|a|<p of the spectral
domain, respectively. The former is the evanescent part of the
continuous spectrum for which we still have B,(a)= B5(a)=0
and 4, (a)=A)\(a)=0 and is related to the near-zone field.
The latter is the propagating type and is responsible to the
far-zone field; it provides the infinite complex power flow of a
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continuous mode [4] that can be written as

P=a(r=7){ 5 [(1Ao() '+ o)

+| 4y (o) [+ By(e)[) da
# 2 [ Ao [+ B ()

2 2
() [+ B (@) dal. 3
From (3), it can be seen that a power separation arises between
constituent spectral plane waves of TE and TM types as well as
between spectral plane waves of a given type radiating in either
the y or — y direction. Therefore, continuous field solutions have
to be constructed from four partial scattered fields corresponding
to the illumination of the SL lines by TE and/or TM incident
spectral plane waves denoted A}, (a)e™ ¥ and/or 4, (a)e™?,
respectively, in region O, and TE and/or TM incident spectral
plane waves denoted By (a)e’Y” and/or By (a)e’/", respectively,
in region N.

These incident waves with arbitrary amplitudes and phases are
created by filamentary sources at infinity. Selecting, for instance,
the TE incident spectral wave Ay, (a)e™"”, we must write 4,(a)
=0 and By(a)= B4y(a)=0 in the visible range of (1). Let us
notice that the invisible range of the spectral domain does not
exist in “symmetric” multilayered waveguides (e, =€y) with
homogeneous boundaries at the interface y =0 [4]. On the con-
trary, this range is used in an “asymmetric” configuration (€, #
€ ) [5]. For each partial field, both homogeneous and inhomoge-
neous boundary conditions at interfaces y, can be written in a
general matrix notation [6]. This leads to pairs of functional
equations relating the spectral densities of the tangential electric
field to those of the surface current at the slot plane y = 0. They
are written as

Ex<a,o>]= {fx<a,o>}+[Al(a)
fz(a,O) A2(‘1)

E,(a,0)
for the visible (vis) range of the spectral domain, and as

E(,0)]_[J(e0)
[¢ (""B)]'[Ez(a,O)]~[jz(“’o)]

for the invisible (inv) range of the spectral domain. Quantities
A, (a) and A,(a) in (4a), which are functions of the amplitude of
the selected incident TE or TM spectral plane wave, represent
sources at infinity. Obviously, no sources appear in (4b). Then,
(4) can be solved in the spectral domain by using the Galerkin
procedure as in [3]. Here, a set of inhomogeneous linear equa-
tions (deterministic problem) is obtained, whose solution gives
the spectral densities of the partial hybrid field under considera-
tion for each permissible value of the phase constant B.

[67*(a.8)] [ } (42)

(4b)

IIL

To verify the reliability of the method, the single-slot config-
uration without dielectric layers has been examined. Such an SL
line supports continuous waves only. The partial field that corre-
sponds to the TE spectral wave 4’(a)e ™" incident in the y
direction becomes purely TE so that E, = H, =0 anywhere. We
have in the invisible range B/ (a) = Aj(a) = 0, while in the visible
one, B{(a)=0 and A),(a)=1; such a source normalization in

NUMERICAL RESULTS
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Fig. 3. Current density distribution J,(x,0) in the slot plane corresponding
to a given partial field. N,=2, F=3 GHz, f=— ;1 rd/mm, 2W =1.66

the spectral domain has to be distinguished from the field nor-
malization given by (3).

The E, electric-field component across the slot aperture (|x| <
W) for all partial hybrid fields was expanded as

E.(x,0)= ao/v 1—(-;;—/)2 + glan cos n—WWx. (5

Equations (4) have been solved numerically to yield the spectral
partial field densities E (a,0) and J,(a,0). The electric field
E, (x,0) always satisfies the inhomogeneous boundary conditions
at the slot plane y =0 because of the choice of expanding
functions (5). To confirm the validity of the method, the surface
current J,(x,0) must verify the prescribed inhomogeneous
boundary conditions at the slot plane

J.(x,0)=0, |x|<W
L(x,00£0, |x|>W. (6)

Fig. 3 shows real and imaginary parts of the surface current at
the slot plane y = 0. Inasmuch as the current in the aperture is
found insignificant in comparison with that on the conducting
half plane, conditions (6) are satisfied.

IV. CoNcLusION

The spectral-domain approach for the continuous spectrum of
slot-like lines is presented. Numerical results obtained for one of
the four partial fields in a single-slot without dielectric layers
confirm the reliability of the analysis. The method can be easily
extended for microstrip-like transmission lines. Further results
will be presented in the near future.
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